Recent Advances in Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

Yue Zhang
Cambridge University
frcchang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Topic-Author Clouds of NAACL-HLT 2010

Courtesy: http://www.wordle.net
Dependency Parsing Events in Recent Years

- **CoNLL-X Shared Task: Multi-lingual Dependency Parsing in 2006**
 - http://nextens.uvt.nl/~conll/

- **Tutorial by Joachim Nivre and Sandra Kuebler at COLING-ACL in 2006**
 - http://aclweb.org/mirror/acl2006/program/tutorials/dependency.html

- **CoNLL Shared Task: Joint Parsing of Syntactic and Semantic Dependencies in 2008**
A Few Notes

- This tutorial is focused on recent development in dependency parsing
 - After 2006

- Although this tutorial is on dependency parsing, most approaches are applicable to other formalisms
 - E.g., phrase-structure parsing or synchronous parsing for MT

- The field is really parsing instead of dependency parsing
 - Read all the parsing papers if you can!
Tutorial Goals

- Introduce data-driven dependency parsing (graph-based, transition-based and integrated models)

- Improve dependency parsing via statistical machine learning approaches
 - Explore more features with better learning algorithms
 - Better parsing strategies (efficiency and accuracy)
 - Using extra information sources
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
- Part D: the integrated models
- Part E: other recent trends in dependency parsing
Part A: Introduction to Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Outline

- Part A: introduction to dependency parsing
 - Dependency syntax
 - Dependency parsing approaches
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
- Part D: the integrated models
- Part E: other recent trends in dependency parsing
Ambiguities In NLP

“I saw her duck.”

How about

“I saw her duck with a telescope.”
Dependency Structure vs. Constituency Structure

Parsing is one way to deal with the ambiguity problem in natural language.

Dependency structure

Constituency structure
Dependency Syntax

- A dependency structure represents syntactic relations (dependencies) between word pairs in a sentence.
 - By drawing a link between the two words.

For the link: a **telescope**

- The head of *a* is **telescope**
- **Modifier**, **Dependent**, **Child**
- **Head**, **Governor**, **Parent**
Dependency Graphs

A dependency structure is a directed graph G with the following constraints:

- Connected
- Acyclic
- Single-head
- Projective

No crossing links (a word and its dependents form a contiguous substring of the sentence)
I saw her duck with a telescope.
I saw her duck with a telescope.
Dependency Trees

Over 100 possible trees for this seven-word sentence!

How many trees for a 20-word sentence? Over one million!!
Non-projective Dependency Trees

- With crossing links
- Not so frequent in English
 - All the dependency trees from Penn Treebank are projective
- Common in other languages (Kuhlmann & Satta 09)
 - 23% sentences are non-projective in the Prague Dependency Treebank of Czech
 - Percentage in German and Dutch are even higher

- Long-distance dependencies
- Languages with free word order, such as German and Dutch
Outline

- Part A: introduction to dependency parsing
 - Dependency syntax
 - Dependency parsing approaches
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
- Part D: the integrated models
- Part E: other recent trends in dependency parsing
Dependency Parsing

The problem:
- Input: a sentence
- Output: a dependency tree (connected, acyclic, single-head)

Grammar-based parsing
- Context-free dependency grammar
- Constraint dependency grammar

Ambiguities handling
Incomplete search
Data Driven Dependency Parsing

- **Data-driven parsing**
 - No grammar / rules needed; any tree is possible
 - Parsing decisions are made based on learned models
 - Can deal with ambiguities well

- **Three approaches**
 - Graph-based models
 - Transition-based models
 - Hybrid models
Data-driven Parsing Framework

Training data {sentence, tree} pairs

Parser

X: sentence

Y: dependency tree

Learning algorithm

Parsing model

Parsing algorithm

Parser

language independent
Graph-based Models

Score each possible output
Search for a tree with the highest score
Often use Dynamic Programming to explore search space
Graph-based Models

- Define a space of candidate dependency trees for a sentence
 - **Learning**: induce a model for scoring an entire tree
 - **Parsing**: find a tree with the highest score, given the induced model
 - Exhaustive search
 - Features are defined over a limited parsing history
 - Represented by Eisner 96, McDonald et al. 05a, McDonald et al. 05b and Wang et al. 07
Transition-based Models

- Define a transition system for mapping a sentence to its dependency tree
 - Predefine some **transition actions**
 - **Learning**: induce a model for predicting the next state transition, given the transition history
 - **Parsing**: construct the optimal transition sequence, given the induced model
 - Greedy search / beam search
 - Features are defined over a richer parsing history
 - Represented by *Yamada & Matsumoto 03, Nivre & Scholz 04, Zhang & Clark 08, Huang et al. 09*
Comparison

- Graph-based models
 - Find the optimal tree from all the possible ones
 - Global, exhaustive

- Transition-based models
 - Predefine some actions (shift and reduce)
 - Find the optimal action sequence
 - Local, Greedy or beam search

- The two models produce different types of errors
 - Error distribution *(McDonald & Nivre 07)*
 - Have complementary strengths
Hybrid Models

Three integration methods
- Ensemble approach: parsing time integration (Sagae & Lavie 2006)
- Feature-based integration (Nivre & Mcdonald 2008)
- Single model combination (Zhang & Clark 2008)

Advantages
- Gain benefits from both models
Summary – Introduction to Dependency Parsing

- Dependency Syntax

- Dependency parsing approaches
 - Graph-based models
 - Transition-based models
 - Hybrid models
References

Recent Advances in Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

Yue Zhang
Cambridge University
frcchang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Part B: Graph-based Dependency Parsing Models

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
 - Dependency parsing model
 - Parsing algorithms
 - Features
 - Learning approaches
- Part C: transition-based models
- Part D: the combined models
- Part E: other recent trends in dependency parsing
Dependency Parsing Model

- X: an input sentence
- Y: a candidate dependency tree
- $x_i \rightarrow x_j$: a dependency link from word i to word j
- $\Phi(X)$: the set of possible dependency trees over X

$Y^* = \arg\max_{Y \in \Phi(X)} \text{score}(Y | X)$

$= \arg\max_{Y \in \Phi(X)} \sum_{(x_i \rightarrow x_j) \in Y} \text{score}(x_i \rightarrow x_j)$

- Applicable to both probabilistic and non-probabilistic models

Edge/link based factorization (Eisner 96)

I saw her duck
Edge Based Factorization

\[Y^* = \arg \max_{Y \in \Phi(X)} \sum_{(x_i \rightarrow x_j) \in Y} \text{score}(x_i \rightarrow x_j) \]

\[\text{score}(x_i \rightarrow x_j) = f(x_i \rightarrow x_j) \cdot \theta \]

- A vector of features
- A vector of feature weights

The score of a link is dot product between feature vector and feature weights

- What features we can use? (later)
- What learning approaches can lead us to find the best tree with the highest score (later)
Score of a Link

The score of each link is based on the features

The features for the word pair: \((saw, duck)\)

- \((saw, duck) = 1\)
- POS \((saw, duck)\): \((VBD, NN) = 1\)
- PMI \((saw, duck) = 0.27 \text{ (PMI: pointwise mutual information)}\)
- \(\text{dist} (saw, duck) = 2\) \(\text{dist2}(saw, duck) = 4\)

\[
\text{score (saw, duck)} = 1* \theta_{(saw, duck)} + 1* \theta_{(VB, NN)} + 0.27* \theta_{PMI} + 2* \theta_{\text{dist}} + 4* \theta_{\text{dist2}}
\]
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
 - Dependency parsing model
 - Parsing algorithms
 - Features
 - Learning approaches
- Part C: transition-based models
- Part D: the combined models
- Part E: other recent trends in dependency parsing
Comparison of Some Popular Dependency Parsing Algorithms

<table>
<thead>
<tr>
<th>Name</th>
<th>Inventor</th>
<th>Projectivity</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKY-style chart parsing</td>
<td>Cocke–Younger–Kasami</td>
<td>Projective</td>
<td>$O(n^5)$</td>
</tr>
<tr>
<td>Eisner $O(n^3)$ parsing alg.</td>
<td>Eisner (96)</td>
<td>Projective</td>
<td>$O(n^3)$</td>
</tr>
<tr>
<td>Maximum Spanning Tree</td>
<td>Chu-Liu-Edmonds (65, 67)</td>
<td>Non-projective</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>Shift-Reduce style parsing</td>
<td>Yamada, Nivre</td>
<td>Projective</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
The CKY-style algorithm $O(n^5)$

Slide thanks to Jason Eisner

NAACL
Why CKY is $O(n^5)$ not $O(n^3)$

\ldots advocate \ldots hug

\ldots visiting relatives \ldots

Slide thanks to Jason Eisner

NAACL 2010 Tutorial ------ Qin Iris Wang & Yue Zhang------June 1, 2010
Combine what B and C?

- must try different-width C’s (vary k)
- must try different midpoints j
- Separate these!
O(n⁴) Parsing Algorithm
(Eisner&Satta 99)

(the old CKY way)

Step 1: (i, j, h, h')
O(n⁴)

Step 2: (i, h, h', k)
O(n⁴)

Slide thanks to Jason Eisner
We Can Do Better

(\textit{the old CKY way})

\begin{align*}
\text{Step 1: } (j, h, h') & \quad O(n^3) \\
\text{Step 2: } (h, h', k) & \quad O(n^3) \\
\text{Step 3: } (i, h, k) & \quad O(n^3)
\end{align*}

Slide thanks to Jason Eisner

NAACL 2010 Tutorial ------ Qin Iris Wang & Yue Zhang------June 1, 2010
The $O(n^3)$ Half-Tree Parsing Algorithm
(Eisner 96)
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
 - Dependency parsing model
 - Parsing algorithms
 - Features
 - Learning approaches
- Part C: transition-based models
- Part D: the combined models
- Part E: other recent trends in dependency parsing
Basic Features

- Uni-gram features
- Bi-gram features
- In between POS features
- Surrounding word POS features

I saw her duck with a telescope

<table>
<thead>
<tr>
<th>Uni-gram features</th>
<th>Bi-gram features</th>
<th>In between POS features</th>
<th>Surrounding word POS features</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRP VBD PRP$ NN IN DT NN</td>
<td>Saw_VBD, saw, VBD duck_NN, duck, NN</td>
<td>saw_VBD_duck_NN, VBD_duck_NN, saw_duck_NN, saw_VBD_duck, Saw_duck, VBD_NN</td>
<td>VBD_PRP$_NN, VBD_PRP$_PRP$_NN, PRP_VBD_PRP$_NN, VBD_PRP$_NN_IN, PRP_VBD_NN_IN</td>
</tr>
</tbody>
</table>
Non-local Features

- Also known as **dynamic features**
- Take into account the link labels of the surrounding word-pairs when predicting the label of current pair
 - Commonly used in sequential labeling (McCallum et al. 00, Toutanova et al. 03)

- A simple but useful idea for improving parsing accuracy
 - Wang et al. 05
 - McDonald and Pereira 06
Non-local Features

A word’s children are generated first, before it modifies another word
- Define a canonical order

“with telescope / with spot” are the dynamic features for deciding whether generating a link between “saw & with” or “duck & with”
Features from Other Resources

- Cluster-based features (Wang et al. 05, Koo et al. 08)
- Subtrees from auto-parsed data (W. Chen et al. 09)
- Alignment features from bilingual data (Huang et al. 09)
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
 - Dependency parsing model
 - Parsing algorithms
 - Features
 - Learning approaches
- Part C: transition-based models
- Part D: the combined models
- Part E: other recent trends in dependency parsing
Learning Approaches for Dependency Parsing

- Local learning approaches
 - Learn a local link classifier given a set of features defined on the local training examples

- Global learning approaches

- Unsupervised/Semi-supervised learning approaches
 - Use both annotated training data and un-annotated raw text
Local Training Examples

- Given training data \{X, Y\}

The boy skipped school regularly

<table>
<thead>
<tr>
<th>Word-pair</th>
<th>Link-label</th>
<th>Instance_weight</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>The-boy</td>
<td>L</td>
<td>1</td>
<td>W1_The, W2_boy, W1W2_The_boy, T1_DT, T2_NN, T1T2_DT_NN, Dist_1, ...</td>
</tr>
<tr>
<td>boy-skipped</td>
<td>L</td>
<td>1</td>
<td>W1_boy, W2_skipped, ...</td>
</tr>
<tr>
<td>skipped-school</td>
<td>R</td>
<td>1</td>
<td>W1_skipped, W2_school, ...</td>
</tr>
<tr>
<td>skipped-regularly</td>
<td>R</td>
<td>1</td>
<td>W1_skipped, W2_regularly, ...</td>
</tr>
<tr>
<td>The-skipped</td>
<td>N</td>
<td>1</td>
<td>W1_The, W2_skipped, ...</td>
</tr>
<tr>
<td>The-school</td>
<td>N</td>
<td>1</td>
<td>W1_The, W2_school, ...</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Local Training Methods

- Learn a local link classifier given a set of features defined on the local examples

- For each word pair in a sentence
 - No link, left link or right link?
 - 3-class classification

- Efficient $O(n)$ local training

- Any classifier can be used as a link classifier for parsing
Combine Local Training with a Parsing Algorithm

Training sentences \{(X, Y)\}

Local training examples

Local link model \(h\)

Link score

\[\text{score}(x_i \rightarrow x_j) = \theta \cdot f(x_i \rightarrow x_j)\]

Standard application of ML

Dependency parsing algorithm

Dependency tree
Parsing With a Local Link Classifier

- Learn the weight vector θ over a set of features defined on the local examples

Generative approaches
 - Maximum entropy models \(\text{(Ratnaparkhi 99, Charniak 00)}\)

Discriminative approaches
 - Support vector machines \(\text{(Yamada & Matsumoto 03)}\)
 - Use a richer feature set!

- Each link is scored separately, instead of being computed in coordination with other links in a sentence
Global Training for Parsing

- Directly capture the relations between the links of an output tree

- Incorporate the effects of the parser directly into the training algorithm
 - Structured SVMs (Tsochantaridis et al. 04)
 - Max-Margin Parsing (Taskar et al. 04)
 - Improved large-margin training (Wang et al. 06)
 - Online large-margin training (McDonald et al. 05a)
Standard Large Margin Training

\[\min_{\theta} \frac{\beta}{2} \theta^T \theta + \sum_i \xi_i \quad \text{subject to} \]
\[\xi_{i,Y} \geq L(Y_i,Y) - (\text{score}(X_i,Y_i) - \text{score}(X_i,Y)) \]
\[\text{for all } i, Y \in \Phi(X_i) \]

- Having been used for parsing
 - Tsochantaridis et al. 04, Taskar et al.04

- State of the art performance in dependency parsing
 - McDonald et al. 05a

Exponential constraints!
Online Large-Margin Training
(McDonald et al. 05a)

For each training instance \((X_i,Y_i)\)

- Find current \(k\) best trees:
- Create constraints using these \(k\) best
- Small number of constraints for each QP

\[
\theta = \arg \min_{\theta^*} ||\theta^* - \theta||
\]

\[
s.t. \text{score}(X_i,Y_i) - \text{score}(X_i,Y) \geq L(Y_i,Y)
\]

\[
\forall Y \in k - best - trees(X_i)
\]
Structured Boosting \textbf{(Wang et al. 07)}

- A simple approach to training structured classifiers by applying a boosting-like procedure to standard supervised training methods
 - A simple variant of standard boosting algorithms
 Adaboost M1 (Freund & Schapire 97)

- Advantages
 - Global optimization
 - Simple, as efficient as local methods
 - General, can use any local classifier
 - Besides dependency parsing, it can be easily applied to other tasks
Structured Boosting for Dependency Parsing

Training sentences \{(S, T)\}

Local training examples

Local link classifier \(h\)

\(h_1, h_2, h_3, \ldots, h_k\)

Dependency parsing algorithm

Compare with the gold standard trees

Re-weight the mis-parsed examples

Increase the weight of mis-classified examples

Link score

Dependency trees

Global training & efficient
Structured Boosting (An Example)

I saw her duck with a telescope

Weights of local examples

Not feature weight!!

Instance_weight of the pair “saw-with”

Instance_weight of the pair “duck-with”
From Supervised to Semi/unsupervised learning

- The Penn Treebank
 - 4.5 million words
 - About 200 thousand sentences
 - Annotation: 30 person-minutes/sentence

- Raw text data
 - News wire
 - Wikipedia
 - Web resources
 - Limited & Human-labor expensive!
 - plentiful & Free!

Semi/unsupervised learning
Unsupervised/Semi-supervised learning approaches

- **Self-training**
 - Not very effective
 - Until recently (McClosky et al. 06a, McClosky et al. 06b)

- **Generative models (EM)**
 - Local optima
 - The disconnection between likelihood and accuracy
 - Same mistakes can be amplified at next iteration

- **Semi-supervised Structured SVM (S3VM)**
 - Global optimum
 - Incorporate the effects of the parser directly into the training algorithm
Semi-supervised Structured SVM (S3VM)

- The objective of the standard S^3VM is a combination of
 - Structured loss on labeled data (convex)
 - Structured loss on un-labeled data (non-convex)
- Convex + non-convex is non-convex
 - Local optima
- Complex and expensive to solve
 - Too complicated to apply it to parsing
Semi-supervised Convex Training
Dependency Parsing (Wang et al. 08)

- The objective is a combination of
 - Structured loss on labeled data (convex)
 - Least square loss on un-labeled data (convex)

- Using a stochastic gradient descent approach
 - Parameters are updated locally on each sentence
 - Converge after a few iterations

- This convex training approach:
 - Focused on semi-supervised learning instead of feature engineering
 - Used only basic features due to the complexity issue

convex + convex is convex
Semi-supervised Convex Training
Dependency Parsing \textit{(Wang et al. 08)}

Parameter including:
- feature weights
- labels on raw text

Optimize both feature vector and labels on raw text
Simple Semi-supervised Dependency Parsing (Koo et al. 08)

- Extract features from unlabeled data
 - Instead of solving the complex S^3VM, add features derived from a large unannotated corpus

- Combining word clusters with discriminative learning (Miller et al. 04)
 - Incorporate word clusters derived from a large unannotated corpus via unsupervised learning
 - Using both the baseline and cluster-based features
 - Average perceptron learning algorithm (fast)
 - Achieve substantial improvement on dependency parsing over competitive baseline
Simple Semi-supervised Dependency Parsing (Koo et al. 08)

- Baseline features: over a million
- Cluster-based features: over a billion!

Standard supervised Learning algorithm

Semi-supervised Parsing model

(Wang et al. 05) Generative probability model

Clustering algorithm

Combined features

Raw text

annotated data
Summary – Graph-based Models

- Dependency parsing model
- Dependency parsing algorithms
- Features
- Learning algorithms
References

Recent Advances in Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

Yue Zhang
Cambridge University
frcechang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Part C: Transition-based Dependency Parsing Models

Yue Zhang
Cambridge University
frecchang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
 - Transition-based parsing processes
 - Decoding algorithms
 - Learning algorithms and feature templates
- Part D: the integrated models
- Part E: other recent trends in dependency parsing
Overview

- Graph-based parsers
 - Enumerate all possible graphs
 - Score each candidate according to graph-based features
 - Choose the highest scored one

- Transition-based parsers
 - Build a candidate output using a stack and a set of actions
 - The stack used to hold partially-built parses
 - The input tokens are put into a queue
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

I like playing table-tennis with her.
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

I like playing table-tennis with her.
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

I like playing table-tennis with her.
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

like playing table-tennis with her.

I
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

I like playing table-tennis with her.
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

I like playing table-tennis with her.
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

like playing with her.

I table-tennis
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

...
A transition-based parsing process

- Stack holds partially built parses
- Queue contains unprocessed words
- Transition-actions
 - Consume input words
 - Build output parse

I like playing table-tennis with her.
The arc-eager parser

- Arc-eager parser
 - A stack to hold partial candidates
 - A queue of next incoming words
 - Four transition-actions
 - SHIFT, REDUCE, ARC-LEFT, ARC-RIGHT
 - Examples
 - MaltParser (Nivre et al., 2006)
 - Johansson and Nugues (2007)
 - Zhang and Clark (2008)
The arc-eager parser

- The context

![Diagram of the arc-eager parser]

- The stack
- The input

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
The arc-eager parser

- Transition actions
 - Shift

\[... \quad STP \quad ST \quad N0 \quad N1 \quad N2 \quad N3 \quad ... \]

The stack

STLC

STRC

The input

N0LC
The arc-eager parser

- Transition actions
 - Shift
 - Pushes stack

![Diagram of the arc-eager parser]

The stack
- STP
- ST
- N0
- STLC
- STRC
- N0LC

The input
- N1
- N2
- N3
- ...
The arc-eager parser

- Transition actions
 - Reduce

The stack
- STP
- STLC
- STRC

The input
- N0
- N1
- N2
- N3
...
The arc-eager parser

- Transition actions
 - Reduce
 - Pops stack
The arc-eager parser

- Transition actions
 - Arc-Left
The arc-eager parser

- Transition actions
 - Arc-Left
 - Pops stack
 - Adds link

```
... STP  N0 N1 N2 N3 ...
  The stack  The input
  ST
  N0LC
  STLC
  STRC
```
The arc-eager parser

- Transition actions
 - Arc-right
The arc-eager parser

- Transition actions
 - Arc-right
 - Pushes stack
 - Adds link
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight

He does it here
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight

He does it here → S → He does it here
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight

He does it here → S → He does it here → AL → He does it here

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight

He does it here → S → He does it here → AL → He does it here → S → He does it here
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight

```
  He does it here  S  He does it here  AL  does it here  S  does it here
                  He                      He

  He  it

  He

  does here

  He

  does it here

  He
```

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight
The arc-eager parser

- An example
 - S – Shift
 - R – Reduce
 - AL – ArcLeft
 - AR – ArcRight

He does it here → S → He does it here → AL → does it here → S → does it here

AR

does

here

He

it

here

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
The arc-eager parser

- Arc-eager parser
 - Time complexity: linear
 - Every word is pushed once onto the stack
 - Every word except the root is popped once
 - Links are added between ST and N0
 - As soon as they are in place
 - 'eager'
The arc-eager parser

- Arc-eager parser
 - Labeled parsing?

```
ArcLeft  ArcLeft subject
        ArcLeft noun modifier
       ...

ArcRight ArcRight object
          ArcRight prep modifier
         ...
```
The arc-standard parser

- Arc-standard parser
 - Same as previously
 - A stack to hold partial candidates
 - A queue of next incoming words
 - Different from previously
 - Transition actions: SHIFT LEFT RIGHT
 - Examples
 - Huang et al. (2009)
The arc-standard parser

- Transition actions
 - Shift

```
| ... | ST1 | ST | N0 N1 N2 N3 ...
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>The stack</td>
<td>STLC</td>
<td>STRC</td>
<td>The input</td>
</tr>
</tbody>
</table>
```
The arc-standard parser

- Transition actions
 - Shift
 - Pushes stack

![Diagram of the stack and input structure]

NAAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-------June 1, 2010
The arc-standard parser

- Transition actions
 - Left

![Diagram of the arc-standard parser]

NAACL 2010 Tutorial ------ Qin Iris Wang & Yue Zhang------June 1, 2010
The arc-standard parser

- Transition actions
 - Left
 - Pops stack
 - Adds link

```
  ...           N0 N1 N2 N3 ...
      ST
    /   \
  ST1   STLC  STRC
```

The stack The input
The arc-standard parser

- Transition actions
 - Right

```
...  ST1  ST  N0 N1 N2 N3 ...

The stack

STLC  STRC

The input
```
The arc-standard parser

- Transition actions
 - Right
 - Pops stack
 - Adds link

![Diagram showing the arc-standard parser with nodes and transitions]
The arc-standard parser

- Arc-standard parser
 - Time complexity: linear
 - Every word is pushed once onto the stack
 - Every word except the root is popped once
 - Links are added between ST and ST1
- Standard or eager?
 - empirical
The arc-standard parser

- Arc-standard parser
 - Similarity to shift-reduce phrase-structure parsing
 - Sagae and Lavie (2005)
 - Wang et al. (2006)
 - Zhang and Clark (2009)
Non-projectivity

- Problem

A meeting was scheduled for this today.

- Neither parsers solves it
 - Word orders are kept
 - Links added between neighbors (on stack)
Non-projectivity

- Problem
 A meeting was scheduled for this today.

- One Solution
 A meeting \textit{for this} was scheduled today.
Non-projectivity

- Online reordering (Nivre 2009)
 - Add an extra action to the parser: swap
 - Pops the second word off stack
 - The other transitions are the same
Non-projectivity

- An extra transition action
 - swap

A meeting was scheduled for this today.
Non-projectivity

- An extra transition action
 - swap

A meeting was scheduled for this today.
Non-projectivity

- An extra transition action
 - swap

A meeting was scheduled for this today.
A transition-based parsing process

- An extra transition action
 - swap

meeting was scheduled for this today.
A transition-based parsing process

- An extra transition action
 - swap

```
meeting was scheduled for this today.
```

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
A transition-based parsing process

- An extra transition action
 - swap

meeting was scheduled for this today.
A transition-based parsing process

- An extra transition action
 - swap

meeting was scheduled for this today.
A transition-based parsing process

- An extra transition action
 - swap

meeting was for scheduled this today.
A transition-based parsing process

- An extra transition action
 - swap

meeting for was scheduled this today.

A
A transition-based parsing process

- An extra transition action
 - Swap

...
A transition-based parsing process

- An extra transition action
 - swap

```
meeting for this was scheduled today.
```

A
Non-projectivity

- Online reordering (Nivre 2009)
 - Add an extra action to the parser: swap
 - Not linear any more
 - Can be N-square
 - Expected linear time
Transition-based parsing processes

- Summary
 - Build the output using
 - A stack
 - A set of transition actions
 - Different types
 - Arc-eager
 - Arc-standard
 - More?
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
 - Transition-based parsing processes
 - Decoding algorithms
 - Learning algorithms and feature templates
- Part D: the integrated models
- Part E: other recent trends in dependency parsing
Decoding algorithms

- Goal
 - Search for one sequence of transition-action to build the parse
 - Done by scoring transition action given context
 - Models talked about in the next section

- Comparison with graph-based
 - Search for one graph from candidates
Decoding algorithms

- Candidate item
 \[<S, G, Q>\]
Decoding algorithms

- Greedy local search
 - Initialize a start item
 \[S=\text{empty}, \ G=\text{empty}, \ Q=\text{input sentence} \]
 - Define a final item
 \[S=[\text{root}], \ G=\text{tree}, \ Q=[] \]
 - Pick up one transition-action at a time by score
Greedy local search

- Malt parser (Nivre et al., 2006)
 - Arc-eager transitions
 - Pushing actions: SHIFT, ARC-RIGHT
 - Popping actions: REDUCE, ARC-LEFT
 - Links are added with ARC-
 - Start state
 - Stack empty, no word has been processed by now
 - Finish state
 - Stack contains only root, all processed
 - Greedily picks up one transition action after another from start to finish

Score(action)
Greedy local search

- Malt parser
Greedy local search

- Malt parser

He does it here He does it here
Greedy local search

- Malt parser
Decoding algorithms

- Greedy local search
 - Problem:
 one error leads to incorrect parse
Decoding algorithms

- Beam search

 - Keeps N different partial state items in agenda.
 - Use the total score of all actions to rank state items

\[
Score(\text{parse}) = \sum_{action \in \text{parse}} Score(\text{action})
\]

- Avoid error propagations from early decisions
Beam search

- Example work
 - Johansson and Nugues (2007)
 - Zhang and Clark (2008)
Beam search

- An example

He does it here
Beam search

- An example

He does it here

He does it here
Beam search

- An example
Beam search

- An example
Beam search

- An example

He does it here

He does it here
Beam search

- An example

[Diagram showing the process of beam search with steps and choices highlighted.

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010]
Parsing algorithms

- Search strategies
 - Greedy local search
 - Beam search
 - Best-first
 - Duan et al. (2007)
Parsing algorithms

- Search strategies
 - Greedy local search
 - Beam search
 - Best-first
 - Other strategies?
 - Huang and Sagae (2010)
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
 - Transition-based parsing processes
 - Decoding algorithms
 - Learning algorithms and feature templates
- Part D: the integrated models
- Part E: other recent trends in dependency parsing
Models

- The way we score transition actions
 - Linear models
 \[
 \text{Score}(\text{action}) = \sum_{\text{feature} \in \text{features with context}} \text{feature} \times \text{weight(\text{feature})}
 \]
 - Non-linear models
 - SVM
 non-linear kernels
Learning algorithms

- Locally learn for each transition action
 - SVM

![Diagram of STP, ST, N0, N1, N2, N3, The stack, The input, STLC, STRC, N0LC]

- Examples
 - MaltParser (Nivre et al., 2006)
 - Johansson and Nugues (2007)
 - Duan (2007)

- LIBSVM (http://www.csie.ntu.edu.tw/~cjlin/libsvm/)
Learning algorithms

- Feature templates

![Diagram showing feature templates]

- Example templates
 - STw, STp,
 - N0w, N0p,
 - ST N0 distance,
 - STLCw, STLCp,
 - N1w, N1p
 - ...

NAACL 2010 Tutorial ------ Qin Iris Wang & Yue Zhang------June 1, 2010
Learning algorithms

- Feature templates

 ![Diagram](image)

 - The stack
 - STP, ST
 - The input
 - N0, N1, N2, N3

- Example templates
 - STw, STp,
 - N0w, N0p,
 - ST N0 distance,
 - STLCw, STLCp,
 - N1w, N1p
 - ...

- A second order polynomial kernel will combine individuals
Learning algorithms

- Globally learn the best sequence of actions
 - Linear model to score actions
 - Globally search for the best sequence of actions, globally learn

\[
Score(\text{parse}) = \sum_{\text{action} \in \text{parse}} Score(\text{action})
= \sum_{\text{action} \in \text{parse}} \sum_{\text{feature} \in \text{status for action}} \text{feature} \times weight(\text{feature})
\]
Learning algorithms

- Globally learn the best sequence of actions
 - Zhang and Clark (2008)
 - Use the generalized perceptron learning algorithm (Collins, 2002)
Learning algorithms

- Feature templates

```
...  STP  ST  N0  N1  N2  N3  ...
```

- Example templates
 - STw, STp,
 - N0w, N0p,
 - ST N0 distance,
 - STwSTp, STwN0w, STwpN0wp
 - ...

- Manual combination of information; linear model.
References

Xiangyu Duan, Jun Zhao, Bo Xu, 2007. Probabilistic Models for Action-Based Chinese Dependency Parsing. In proceedings of ECML, pages 559-566
Recent Advances in Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

Yue Zhang
Cambridge University
frechang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Part D: The Combination of Different Models

Yue Zhang
Cambridge University
frechang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
The combined models

- **Motivation**
 - Parsers make different mistakes, each having a particular strength
 - McDonald and Nivre (2007)
 - Combined parser lead to superior accuracies than individual parsers
Overview

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
- Part D: the integrated models
 - The ensemble approach
 - The stacking approach
 - The single-model approach
- Part E: other recent trends in dependency parsing
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately
 - m parses for a single input
 - Combine all parses
 - Calculate link weights according to each parse
 - Add m numbers
 - Links from different parser outputs weighted equally or differently according to various configurations
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately
 - m parses for a single input
 - Combine all parses
 - Calculate link weights according to each parse
 - Add m numbers
 - Links from different parser outputs weighted equally or differently according to various configurations

- Find the MST according to these weights
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately
 - m parses for a single input
The ensemble method

- Sagae and Lavie (2006)
 - \(m \) parsers
 - Each different and trained separately
 - \(m \) parses for a single input
 - Combine all parses

![Diagram of ensemble method]

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately
 - m parses for a single input
 - Find MST

\[\text{Diagram showing ensemble method} \]
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately

- m parses for a single input
The ensemble method

- Sagae and Lavie (2006)
 - m parsers
 - Each different and trained separately

- m parses for a single input
- Combine all parses by weighted sum of them

\[
\begin{align*}
5 \quad \Rightarrow \\
&+ 2 \\
&\Rightarrow \\
&+ \\
&= \\
&\Rightarrow
\end{align*}
\]
The ensemble method

- Sagae and Lavie (2006)
 - \(m \) parsers
 - Each different and trained separately
 - \(m \) parses for a single input
 - Find the output

\[
5 \quad + \quad 2 \quad + \quad 3 \quad = \quad 5
\]
Overview

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
- Part D: the integrated models
 - The ensemble approach
 - The stacking approach
 - The single-model approach
- Part E: other recent trends in dependency parsing
The stacking method

- Nivre and McDonald (2008)
 - Combination of
 - Graph-based MSTParser
 - Transition-based MaltParser
 - Stacking
The stacking method

- Nivre and McDonald (2008)
 - Train one parser first
 - Parser1
 - Let the other parser (i.e. parser2) consult parser1 when it does parsing
 - Two resulting parsers (Malt-MST, and MST-Malt)
The stacking method

- Nivre and McDonald (2008)
 - During test
 - Use parser1 to parse input
 - Parser2 extract features from parser1 output
 - Take parser2 output as the result
The stacking method

- Nivre and McDonald (2008)
 - During training
 - Use parser1 to parse training data
 - Parser2 extract features from parser1 output
 - Train parser2 with the additional features
The stacking method

- Nivre and McDonald (2008)
 - During training
 - *Use parser1 to parse training data*
 - Parser2 extract features from parser1 output
 - Train parser2 with the additional features
The stacking method

- Nivre and McDonald (2008)
 - During training
 - *Use parser1 to parse training data*
 - Can't train parser1 on the training data (same set)
 - Solution
 - 10-fold cross-validation
 - Take a tenth of the training data as the “test” data
 - Use the other nine tenths to train parser1
 - Generate parser1 output for the “test” sent
 - Repeat 10 times to get parser1 output for all training sentences
 - Parser2 extract features from parser1 output
 - Train parser2 with the additional features
Overview

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based dependency parsing models
- Part D: the integrated models
 - The ensemble approach
 - The stacking approach
 - The single-model approach
- Part E: other recent trends in dependency parsing
The single-model method

- Zhang and Clark (2008)
 - Combine graph-based and transition-based parsers
 - Same as just now
 - Two parsers are treated equally
 - Graph-based and transition-based information in a single model
 - Trained together
 - Used together for decoding
 - They become one
 - single-model
The single-model method

- Zhang and Clark (2008)
 - Challenges:
 - Decoder combination
 - Graph-based parsers typically take dynamic programming
 - Transition-based features hard to be accommodated by DP at the same time
 - Model combination
 - How to use both kinds of information in a single model?
 - Training combination
The single-model method

<table>
<thead>
<tr>
<th>Method</th>
<th>Type</th>
<th>Search Method</th>
<th>Accuracy</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSTParser</td>
<td>Graph-based</td>
<td>Exact search</td>
<td>Accurate</td>
<td>Local features</td>
</tr>
<tr>
<td>MaltParser</td>
<td>Transition-based</td>
<td>Greedy (no search)</td>
<td>Less accurate</td>
<td>Non-local features</td>
</tr>
</tbody>
</table>
The single-model method

MSTParser

Graph-based

Exact search
- Accurate
- Local features

Beam search (approximate)
- Some search
- Non-local features

MaltParser

Transition-based

Greedy (no search)
- Less accurate
- Non-local features
The single-model method

<table>
<thead>
<tr>
<th>MSTParser</th>
<th>Combine</th>
<th>MaltParser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph-based</td>
<td>Beam search (approximate)</td>
<td>Transition-based</td>
</tr>
<tr>
<td>Exact search</td>
<td>• Some search</td>
<td>Greedy (no search)</td>
</tr>
<tr>
<td>○ Accurate</td>
<td>• Non-local features</td>
<td>○ Less accurate</td>
</tr>
<tr>
<td>○ Local features</td>
<td></td>
<td>○ Non-local features</td>
</tr>
</tbody>
</table>
The single-model method

- Zhang and Clark (2008)
 - Decoder combination
 - The beam-search decoder for the transition-based parser
 - Provides transitions;
 - Provides graph (partial parse in candidate item <S, Q, G>);
 - Does not restrict features – we use non-local graph-features too.
 - Model combination
 - Training methods of the combined model
The single-model method

- Zhang and Clark (2008)
 - Decoder combination
 - Model combination (linear models)
 - \(\text{Score}_{\text{COMBINED}}(\text{parse}) = \text{Score}_{\text{GRAPH}}(\text{parse}) + \text{Score}_{\text{TRANSITION}}(\text{parse}) \)
 - \(\text{Score}_{\text{GRAPH}}(\text{parse}) = \sum_{\text{feature} \in \text{parse}} \text{feature} \times \text{weight}(\text{feature}) \)
 - \(\text{Score}_{\text{TRANSITION}}(\text{parse}) = \sum_{\text{action} \in \text{parse}} \text{Score}(\text{action}) \)
 \[= \sum_{\text{action} \in \text{parse}} \sum_{\text{feature} \in \text{status for action}} \text{feature} \times \text{weight}(\text{feature}) \]
 - \(\text{Score}_{\text{COMBINED}}(\text{parse}) = \sum_{\text{feature} \in \text{graph + action}} \text{feature} \times \text{weight}(\text{feature}) \)
 - Training methods of the combined model
The single-model method

- Zhang and Clark (2008)
 - Decoder combination
 - Model combination

![Diagram showing the stack and input with transitions](image)

- Transition feature templates (w – word, t – POS tag)
 - **Stack top**: STwt; STw; STt
 - **Current word**: N0wt; N0w; N0t
 - **Next word**: N1wt; N1w; N1t
 - **Stack top and current word**: STwtN0wt; STwtN0w; ...
 - **POS bigram**: N0tN1t
 - **POS trigrams**: N0tN1tN2t; STtN0tN1t; ...
 - **N0 word + POS bigrams**: N0wN1tN2t; STtN0wN1t; ...

- Training methods of the combined model

NAACL 2010 Tutorial ----- Qin Iris Wang & Yue Zhang-----June 1, 2010
The single-model method

- Zhang and Clark (2008)
 - Decoder combination
 - Model combination
 - Graph feature templates
 - From MSTParser
 - **Head**: Head word, head tag, head word + tag
 - **Modifier**: Modifier word, modifier tag, modifier word + tag
 - **Head + modifier**: word / tag combinations
 - **Between**: Any tag between head and modifier
 - **Surrounding**: Tags on the left / right of head / modifier
 - **Sibling**: word / tag combinations
 - Extra features
 - **Two links**: Tags of parent, child and grandchild
 - **Arity**: head word / tag Transition feature templates (w – word, t – POS tag)

Training methods of the combined model
The single-model method

- Zhang and Clark (2008)
 - Decoder combination
 - Model combination
 - Graph feature templates
 - From MSTParser
 - Extra features
 - I like
 - The man like
 - Training methods of the combined model
The single-model method

- Zhang and Clark (2008)
 - Decoder combination
 - Model combination
 - Training methods of the combined model
 - Perceptron – allowed by the linear model
The combined models

- Comparison
 - Ensemble method: decoding time combination
 - Stacking method: decoding and training time combination, but separately
 - Single method: complete combination

- One recent study about ensemble / stacking
 - Surdeanu and Manning (2010)
References

Xiangyu Duan, Jun Zhao, Bo Xu, 2007. Probabilistic Models for Action-Based Chinese Dependency Parsing. In proceedings of ECML, pages 559-566
Recent Advances in Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

Yue Zhang
Cambridge University
frcchang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Part E: Other Recent Trends in Dependency Parsing

Qin Iris Wang
AT&T Interactive
qiniriswang@gmail.com

NAACL Tutorial, Los Angeles
June 1, 2010
Outline

- Part A: introduction to dependency parsing
- Part B: graph-based dependency parsing models
- Part C: transition-based models
- Part D: the combined models
- Part E: other recent trends in dependency parsing
 - Explore higher order features
 - Use extra information source
 - Better parsing strategies
Other Recent Trends in Dependency Parsing

- Explore higher order features
- Use extra information sources
 - Raw data
 - Bilingual data
 - Linguistic rules
- Better parsing strategies
Explore Higher-Order Features (1)

- Dependency Parsing by Belief Propagation (Smith & Eisner, 08)
 - Has a first order baseline parser
 - Using a BP network to incorporate higher order features into this first order parser approximately

- Integration of graph-based and transition-based models (Zhang & Clark, 08)
 - Approximation by beam-search
Explore Higher-Order Features (2)

- Concise Integer Linear Programming Formulations for Dependency Parsing (Martins et al. 09)
 - Formulate dependency parsing as a polynomial-sized integer linear program
 - Integer linear programming in NLP tutorial this afternoon
Use Extra Information Source – Raw Data

- Improving dependency parsing with subtrees from auto-parsed data (W. Chen et al. 09)
 - Using a base parser to parse large scale unannotated data
 - Extract subtrees from the auto-parsed data

- Simple semi-supervised dependency parsing (Koo et al. 08)

- Semi-supervised convex dependency parsing (Wang et al. 08)
Use Extra Information Source – Bilingual Data

- Bilingually-constrained monolingual shift-reduce parsing (Huang et al. 09)
 - A novel parsing paradigm that is much simpler than bi-parsing
 - Enhance a shift-reduce dependency parser with alignment features to resolve shift-reduce conflicts
Use Extra Information Source – Linguistic Rules

- Semi-supervised Learning of Dependency Parsers using Generalized Expectation Criteria (Druck et al. 09)
 - Directly use linguistic prior knowledge as a training signal
 - Model parameters are estimated using a generalized expectation (GE) objective function that penalizes the mismatch between model predictions and linguistic expectation constraints.
Better Parsing Strategies

- Non-projective shift-reduce parsing \textit{(Nivre, 09)}
 - Expected linear time

- Easy-First Non-Directional Dependency Parsing \textit{(Goldberg and Elhadad, 10)}
 - Inspired by \textit{Shen et al. 07}
 - Use an easy-first order instead, $O(n\log n)$ complexity
 - Allows using more context at each decision

- Dynamic programming for incremental parsing \textit{(Huang & Sagae, 10)}
 - Linear time
References

References

Thanks!